Find the best survey software for you!
(Along with a checklist to compare platforms)
Take a peek at our powerful survey features to design surveys that scale discoveries.
Explore VoxcoÂ
Need to map Voxco’s features & offerings? We can help!
Find the best customer experience platform
Uncover customer pain points, analyze feedback and run successful CX programs with the best CX platform for your team.
We’ve been avid users of the Voxco platform now for over 20 years. It gives us the flexibility to routinely enhance our survey toolkit and provides our clients with a more robust dataset and story to tell their clients.
Steve Male
VP Innovation & Strategic Partnerships, The Logit Group
Explore Regional Offices
Find the best survey software for you!
(Along with a checklist to compare platforms)
Take a peek at our powerful survey features to design surveys that scale discoveries.
Explore VoxcoÂ
Need to map Voxco’s features & offerings? We can help!
Find the best customer experience platform
Uncover customer pain points, analyze feedback and run successful CX programs with the best CX platform for your team.
We’ve been avid users of the Voxco platform now for over 20 years. It gives us the flexibility to routinely enhance our survey toolkit and provides our clients with a more robust dataset and story to tell their clients.
Steve Male
VP Innovation & Strategic Partnerships, The Logit Group
Explore Regional Offices
SHARE THE ARTICLE ON
When a researcher introduces a systematic error into the sample data, he or she skews the entire process towards a specific research outcome. In other words, it is a process in which the researcher directs the results of a systematic investigation.Â
When bias is introduced into research, it throws the investigation off track and diverts it from its intended results. When the researcher’s personal preferences and choices have an undue influence on the study, this is known as research bias.Â
Take, for example, a study on the effects of alcohol conducted by a religious conservative researcher. A case of research bias occurs when a researcher’s conservative beliefs cause him or her to create a biased survey or have sampling bias.Â
The goal of reducing bias is to ensure that questions are thoughtfully posed and asked such that they allow respondents to reveal their true feelings without distortions. The risk of bias exists in all aspects of qualitative research, including the questions, respondents, and moderator. Let’s look into the primary sources to reduce bias and deliver better research.Â
Creating market research surveys is easy with Voxco Get started today
The structure and methods of your research play a role in design bias. It occurs when the researcher’s preferences dominate the research design, survey questions, and research method, rather than what is best for the research context.
In many cases, bias can be introduced into your research process due to poor research design or a cluster of synergy between the various contributing variables in your systematic investigation. When a researcher’s personal experiences influence the research question and methodology, this is known as research bias.Â
Example: A researcher who is involved in the development of a new drug may create a survey with questions that focus solely on the drug’s strengths and value.Â
When the research criteria and study inclusion method automatically exclude a portion of your population from the study, this is known as selection bias. You’re more likely to get uni-dimensional study outcomes if you choose research participants who share similar characteristics.
In the context of research, selection bias can manifest itself in various ways. Inclusion bias occurs when participants are chosen to represent your research population while groups with different experiences are ignored. It is especially common in quantitative research.Â
Example: Using the internet to administer your survey, limiting it to internet savvy individuals and excluding those who do not have access to the internet.
Supercharge your survey insights with Voxco
In many cases, bias exists in peer-reviewed journals and other published academic papers. The criteria of publication in research papers in a particular field frequently imposes this bias on them. Researchers write papers to meet these criteria, and they may disregard information or methods that do not.
Example: If a research paper contains statistical data, it is more likely to be published in quantitative research. Non-publication in qualitative studies, on the other hand, is more likely due to a lack of detail when describing study methodologies and findings are not presented.Â
This is a type of data processing bias that occurs during study. When sorting and interpreting data, the researcher may be drawn to data samples that support his or her own beliefs, expectations, or personal experiences; in other words, data that supports the study hypothesis.Â
This indicates that the researcher ignores data samples that are inconsistent and suggests study conclusions that contradict the hypothesis, whether purposefully or accidentally. Analysis bias can have a big impact since it skews study results and gives a distorted picture of what’s possible in the lab.Â
Example: When researching cannabis, a researcher looks for data samples that support negative effects while ignoring data that supports good benefits.Â
When the researcher’s personal preferences or opinions influence how data samples are acquired in a systematic examination, this is known as data collection bias or measurement bias. Both qualitative and quantitative research methodologies might suffer from data gathering bias.Â
Data collection methods can occur in quantitative research when you use a data-gathering tool or approach that isn’t appropriate for your study population. For example, you may send an email or a link to a survey to people who don’t have access to the internet.Â
When you ask inappropriate survey questions during a semi-structured or unstructured interview in qualitative research, you’re committing data collection bias. Questions that lead the interviewee to make implicit assumptions are bad survey questions. Bad questions include those that are misleading or loaded.Â
Wondering what will be the cost of conducting survey research using Voxco?
Procedural bias is a sort of research bias that occurs when study participants are given insufficient time to complete surveys. As a result, respondents are forced to submit half-thoughts and incomplete information, which does not accurately represent their thoughts.Â
Respondents can be subjected to procedural respondents in a variety of ways. For example, requiring respondents to complete a survey fast in order to receive an incentive may compel them to provide incorrect information in order to expedite the process.Â
Example: During break time, ask staff to complete an employee feedback survey. Respondents are put under unnecessary strain by this timescale, which can impair the legitimacy of their responses.
Voxco’s Visual Analytics Dashboards provide insights that aid decision-making
See how you can conduct cost-effective research with Voxco
Explore all the survey question types
possible on Voxco
Read more
We use cookies in our website to give you the best browsing experience and to tailor advertising. By continuing to use our website, you give us consent to the use of cookies. Read More
Name | Domain | Purpose | Expiry | Type |
---|---|---|---|---|
hubspotutk | www.voxco.com | HubSpot functional cookie. | 1 year | HTTP |
lhc_dir_locale | amplifyreach.com | --- | 52 years | --- |
lhc_dirclass | amplifyreach.com | --- | 52 years | --- |
Name | Domain | Purpose | Expiry | Type |
---|---|---|---|---|
_fbp | www.voxco.com | Facebook Pixel advertising first-party cookie | 3 months | HTTP |
__hstc | www.voxco.com | Hubspot marketing platform cookie. | 1 year | HTTP |
__hssrc | www.voxco.com | Hubspot marketing platform cookie. | 52 years | HTTP |
__hssc | www.voxco.com | Hubspot marketing platform cookie. | Session | HTTP |
Name | Domain | Purpose | Expiry | Type |
---|---|---|---|---|
_gid | www.voxco.com | Google Universal Analytics short-time unique user tracking identifier. | 1 days | HTTP |
MUID | bing.com | Microsoft User Identifier tracking cookie used by Bing Ads. | 1 year | HTTP |
MR | bat.bing.com | Microsoft User Identifier tracking cookie used by Bing Ads. | 7 days | HTTP |
IDE | doubleclick.net | Google advertising cookie used for user tracking and ad targeting purposes. | 2 years | HTTP |
_vwo_uuid_v2 | www.voxco.com | Generic Visual Website Optimizer (VWO) user tracking cookie. | 1 year | HTTP |
_vis_opt_s | www.voxco.com | Generic Visual Website Optimizer (VWO) user tracking cookie that detects if the user is new or returning to a particular campaign. | 3 months | HTTP |
_vis_opt_test_cookie | www.voxco.com | A session (temporary) cookie used by Generic Visual Website Optimizer (VWO) to detect if the cookies are enabled on the browser of the user or not. | 52 years | HTTP |
_ga | www.voxco.com | Google Universal Analytics long-time unique user tracking identifier. | 2 years | HTTP |
_uetsid | www.voxco.com | Microsoft Bing Ads Universal Event Tracking (UET) tracking cookie. | 1 days | HTTP |
vuid | vimeo.com | Vimeo tracking cookie | 2 years | HTTP |
Name | Domain | Purpose | Expiry | Type |
---|---|---|---|---|
__cf_bm | hubspot.com | Generic CloudFlare functional cookie. | Session | HTTP |
Name | Domain | Purpose | Expiry | Type |
---|---|---|---|---|
_gcl_au | www.voxco.com | --- | 3 months | --- |
_gat_gtag_UA_3262734_1 | www.voxco.com | --- | Session | --- |
_clck | www.voxco.com | --- | 1 year | --- |
_ga_HNFQQ528PZ | www.voxco.com | --- | 2 years | --- |
_clsk | www.voxco.com | --- | 1 days | --- |
visitor_id18452 | pardot.com | --- | 10 years | --- |
visitor_id18452-hash | pardot.com | --- | 10 years | --- |
lpv18452 | pi.pardot.com | --- | Session | --- |
lhc_per | www.voxco.com | --- | 6 months | --- |
_uetvid | www.voxco.com | --- | 1 year | --- |